Assessing the utility of a sliding-windows deep neural network approach for risk prediction of trauma patients

Alexander Bonde, Mikkel Bonde, Anders Troelsen, Martin Sillesen*

*Corresponding author af dette arbejde
1 Citationer (Scopus)

Abstract

The risks of post trauma complications are regulated by the injury, comorbidities, and the clinical trajectories, yet prediction models are often limited to single time-point data. We hypothesize that deep learning prediction models can be used for risk prediction using additive data after trauma using a sliding windows approach. Using the American College of Surgeons Trauma Quality Improvement Program (ACS TQIP) database, we developed three deep neural network models, for sliding-windows risk prediction. Output variables included early- and late mortality and any of 17 complications. As patients moved through the treatment trajectories, performance metrics increased. Models predicted early- and late mortality with ROC AUCs ranging from 0.980 to 0.994 and 0.910 to 0.972, respectively. For the remaining 17 complications, the mean performance ranged from 0.829 to 0.912. In summary, the deep neural networks achieved excellent performance in the sliding windows risk stratification of trauma patients.

OriginalsprogEngelsk
Artikelnummer5176
TidsskriftScientific Reports
Vol/bind13
Udgave nummer1
ISSN2045-2322
DOI
StatusUdgivet - 30 mar. 2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'Assessing the utility of a sliding-windows deep neural network approach for risk prediction of trauma patients'. Sammen danner de et unikt fingeraftryk.

Citationsformater