Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

An adaptive alignment algorithm for quality-controlled label-free LC-MS

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Distinct Molecular Signatures of Clinical Clusters in People with Type 2 Diabetes: an IMI-RHAPSODY Study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Replication and cross-validation of type 2 diabetes subtypes based on clinical variables: an IMI-RHAPSODY study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Lipidomics of human adipose tissue reveals diversity between body areas

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Lipidomic profiles, lipid trajectories and clinical biomarkers in female elite endurance athletes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Marianne Sandin
  • Ashfaq Ali
  • Karin Hansson
  • Olle Månsson
  • Erik Andreasson
  • Svante Resjö
  • Fredrik Levander
Vis graf over relationer

Label-free quantification using precursor-based intensities is a versatile workflow for large-scale proteomics studies. The method however requires extensive computational analysis and is therefore in need of robust quality control during the data mining stage. We present a new label-free data analysis workflow integrated into a multiuser software platform. A novel adaptive alignment algorithm has been developed to minimize the possible systematic bias introduced into the analysis. Parameters are estimated on the fly from the data at hand, producing a user-friendly analysis suite. Quality metrics are output in every step of the analysis as well as actively incorporated into the parameter estimation. We furthermore show the improvement of this system by comprehensive comparison to classical label-free analysis methodology as well as current state-of-the-art software.

OriginalsprogEngelsk
TidsskriftMolecular & Cellular Proteomics
Vol/bind12
Udgave nummer5
Sider (fra-til)1407-20
Antal sider14
ISSN1535-9484
DOI
StatusUdgivet - maj 2013
Eksternt udgivetJa

ID: 53678887