Abstract
A thorough understanding of the microstructure of cancellous bone is crucial for diagnosis, prophylaxis, and treatment of age-related skeletal diseases. Until now, little has been known about age-related variations in the microstructure of peripheral cancellous bone. This study quantified age-related changes in the three-dimensional (3D) microstructure of human tibial cancellous bone. One hundred and sixty cylindrical cancellous bone specimens were produced from 40 normal proximal tibiae from 40 donors, aged 16-85 years. These specimens were micro-computed tomography (micro-CT) scanned, and microstructural properties were determined. The specimens were then tested in compression to obtain Young's modulus. The degree of anisotropy, mean marrow space volume, and bone surface-to-volume ratio increased significantly with age. Bone volume fraction, mean trabecular volume, and bone surface density decreased significantly with age. Connectivity did not have a general relationship with age. Bone volume fraction together with anisotropy best predicted Young's modulus. Age-related changes in the microstructural properties had the same trends for both medial and lateral condyles of the tibia. The observed increase of anisotropy and constant connectivity suggest a bone remodeling mechanism that may reorient trabecular volume orientation in aging tibial cancellous bone. The aging trabeculae align more strongly to the primary direction--parallel to the tibial longitudinal loading axis.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of orthopaedic research : official publication of the Orthopaedic Research Society |
Vol/bind | 20 |
Udgave nummer | 3 |
Sider (fra-til) | 615-21 |
Antal sider | 7 |
ISSN | 0736-0266 |
DOI | |
Status | Udgivet - maj 2002 |