Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Adapting to the Airways: Metabolic Requirements of Pseudomonas aeruginosa during the Infection of Cystic Fibrosis Patients

Publikation: Bidrag til tidsskriftReviewForskningpeer review

DOI

  1. Neonatal Urine Metabolic Profiling and Development of Childhood Asthma

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Targeted Clinical Metabolite Profiling Platform for the Stratification of Diabetic Patients

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Palmitate and Stearate are Increased in the Plasma in a 6-OHDA Model of Parkinson's Disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Primary ciliary dyskinesia patients have the same P. aeruginosa clone in sinuses and lungs

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Structure of Pseudomonas aeruginosa ribosomes from an aminoglycoside-resistant clinical isolate

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Filamentous bacteriophages are associated with chronic Pseudomonas lung infections and antibiotic resistance in cystic fibrosis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Evolutionary highways to persistent bacterial infection

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Pseudomonas aeruginosa is one of the major causes of morbidity and mortality of cystic fibrosis patients. During the infection, the bacteria colonize the nutritional rich lung mucus, which is present in the airway secretions in the patients, and they adapt their phenotype accordingly to the lung environment. In the airways, P. aeruginosa undergoes a broad metabolic rewiring as a consequence of the nutritional and stressful complexity of the lungs. However, the role of such metabolic rewiring on the infection outcome is poorly understood. Here, we review the metabolic evolution of clinical strains of P. aeruginosa during a cystic fibrosis lung infection and the metabolic functions operating in vivo under patho-physiological conditions. Finally, we discuss the perspective of modeling the cystic fibrosis environment using genome scale metabolic models of P. aeruginosa. Understanding the physiological changes occurring during the infection may pave the way to a more effective treatment for P. aeruginosa lung infections.

OriginalsprogEngelsk
TidsskriftMetabolites
Vol/bind9
Udgave nummer10
Sider (fra-til)9(10), 234
ISSN2218-1989
DOI
StatusUdgivet - 16 okt. 2019

ID: 59017058