TY - JOUR
T1 - Acute moderate elevation of TNF-alpha does not affect systemic and skeletal muscle protein turnover in healthy humans
AU - Petersen, Anne Marie
AU - Plomgaard, Peter
AU - Fischer, Christian P
AU - Ibfelt, Tobias
AU - Pedersen, Bente Klarlund
AU - van Hall, Gerrit
PY - 2009/1
Y1 - 2009/1
N2 - CONTEXT: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha.OBJECTIVE: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover via a 4-h recombinant human (rh) TNF-alpha infusion. We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibits synthesis.SUBJECTS AND METHODS: Using a randomized, controlled, crossover design, postabsorptive healthy young males (n = 8) were studied 2 h under basal conditions followed by a 4-h infusion of either rhTNF-alpha (700 ng . m(-2) . h(-1)) or 20% human albumin (control), which was the vehicle of rhTNF-alpha. Systemic and skeletal muscle protein turnover was estimated by a combination of tracer dilution methodology (primed continuous infusion of l-[ring-(2)H(5)]phenylalanine and l-[(15)N-leucine], with prime of l-[ring-(2)H(4)]tyrosine) and femoral arterial-venous differences over the leg and muscle biopsies.RESULTS: Plasma TNF-alpha concentration rapidly increased from basal levels of approximately 0.7 to 17 pg . ml(-1) with rhTNF-alpha infusion. Whole body protein synthesis, breakdown, and net degradation were similar after the basal and infusion period of the control and rhTNF-alpha trials. Skeletal muscle, musculus vastus lateralis, protein fractional synthetic rate was not different over 4 h of control or rhTNF-alpha (rate of incorporation of (15)N-leucine). Muscle protein turnover determined with the phenylalanine three-compartment model showed similar muscle synthesis, breakdown, and net muscle degradation after 2-h basal and after 4-h control or rhTNF-alpha infusion.CONCLUSION: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when acutely elevated for 4 h to moderate levels not causing adverse effects.
AB - CONTEXT: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha.OBJECTIVE: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover via a 4-h recombinant human (rh) TNF-alpha infusion. We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibits synthesis.SUBJECTS AND METHODS: Using a randomized, controlled, crossover design, postabsorptive healthy young males (n = 8) were studied 2 h under basal conditions followed by a 4-h infusion of either rhTNF-alpha (700 ng . m(-2) . h(-1)) or 20% human albumin (control), which was the vehicle of rhTNF-alpha. Systemic and skeletal muscle protein turnover was estimated by a combination of tracer dilution methodology (primed continuous infusion of l-[ring-(2)H(5)]phenylalanine and l-[(15)N-leucine], with prime of l-[ring-(2)H(4)]tyrosine) and femoral arterial-venous differences over the leg and muscle biopsies.RESULTS: Plasma TNF-alpha concentration rapidly increased from basal levels of approximately 0.7 to 17 pg . ml(-1) with rhTNF-alpha infusion. Whole body protein synthesis, breakdown, and net degradation were similar after the basal and infusion period of the control and rhTNF-alpha trials. Skeletal muscle, musculus vastus lateralis, protein fractional synthetic rate was not different over 4 h of control or rhTNF-alpha (rate of incorporation of (15)N-leucine). Muscle protein turnover determined with the phenylalanine three-compartment model showed similar muscle synthesis, breakdown, and net muscle degradation after 2-h basal and after 4-h control or rhTNF-alpha infusion.CONCLUSION: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when acutely elevated for 4 h to moderate levels not causing adverse effects.
KW - Adult
KW - Cross-Over Studies
KW - Humans
KW - Interleukin-6/pharmacology
KW - Male
KW - Muscle Proteins/metabolism
KW - Muscle, Skeletal/metabolism
KW - Recombinant Proteins/pharmacology
KW - Tumor Necrosis Factor-alpha/blood
U2 - 10.1210/jc.2008-1110
DO - 10.1210/jc.2008-1110
M3 - Journal article
C2 - 18854397
SN - 0021-972X
VL - 94
SP - 294
EP - 299
JO - The Journal of clinical endocrinology and metabolism
JF - The Journal of clinical endocrinology and metabolism
IS - 1
ER -