TY - JOUR
T1 - Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans
AU - Steensberg, Adam
AU - Fischer, Christian P
AU - Sacchetti, Massimo
AU - Keller, Charlotte
AU - Osada, Takuya
AU - Schjerling, Peter
AU - van Hall, Gerrit
AU - Febbraio, Mark A
AU - Pedersen, Bente Klarlund
PY - 2003/4/15
Y1 - 2003/4/15
N2 - The cytokine interleukin (IL)-6 has recently been linked with type 2 diabetes mellitus and has been suggested to affect glucose metabolism. To determine whether acute IL-6 administration affects whole-body glucose kinetics or muscle glucose uptake, 18 healthy young men were assigned to one of three groups receiving a high dose of recombinant human IL-6 (HiIL-6; n = 6), a low dose of IL-6 (LoIL-6; n = 6) or saline (Con; n = 6) infused into one femoral artery for 3 h. The stable isotope [6,6-2H2] glucose was infused into a forearm vein throughout the 3 h infusion period and for a further 3 h after the cessation of infusion (recovery) to determine endogenous glucose production and whole-body glucose disposal. Infusion with HiIL-6 and LoIL-6 resulted in a marked (P < 0.05) increase in systemic IL-6 concentration throughout the 3 h of infusion (mean arterial plasma [IL-6]s of 319 and 143 pg ml-1 for HiIL-6 and LoIL-6, respectively), followed by a rapid decline (P < 0.05) during the recovery period. Subjects experienced clinical symptoms such as shivering and discomfort during HiIL-6 administration, but were asymptomatic during LoIL-6 administration. In addition, only HiIL-6 elevated (P < 0.05) plasma adrenaline (epinephrine). IL-6 infusion, irrespective of dose, did not result in any changes to endogenous glucose production, whole-body glucose disposal or leg- glucose uptake. These data demonstrate that acute IL-6 administration does not impair whole-body glucose disposal, net leg-glucose uptake, or increase endogenous glucose production at rest in healthy young humans.
AB - The cytokine interleukin (IL)-6 has recently been linked with type 2 diabetes mellitus and has been suggested to affect glucose metabolism. To determine whether acute IL-6 administration affects whole-body glucose kinetics or muscle glucose uptake, 18 healthy young men were assigned to one of three groups receiving a high dose of recombinant human IL-6 (HiIL-6; n = 6), a low dose of IL-6 (LoIL-6; n = 6) or saline (Con; n = 6) infused into one femoral artery for 3 h. The stable isotope [6,6-2H2] glucose was infused into a forearm vein throughout the 3 h infusion period and for a further 3 h after the cessation of infusion (recovery) to determine endogenous glucose production and whole-body glucose disposal. Infusion with HiIL-6 and LoIL-6 resulted in a marked (P < 0.05) increase in systemic IL-6 concentration throughout the 3 h of infusion (mean arterial plasma [IL-6]s of 319 and 143 pg ml-1 for HiIL-6 and LoIL-6, respectively), followed by a rapid decline (P < 0.05) during the recovery period. Subjects experienced clinical symptoms such as shivering and discomfort during HiIL-6 administration, but were asymptomatic during LoIL-6 administration. In addition, only HiIL-6 elevated (P < 0.05) plasma adrenaline (epinephrine). IL-6 infusion, irrespective of dose, did not result in any changes to endogenous glucose production, whole-body glucose disposal or leg- glucose uptake. These data demonstrate that acute IL-6 administration does not impair whole-body glucose disposal, net leg-glucose uptake, or increase endogenous glucose production at rest in healthy young humans.
KW - Adult
KW - Blood Pressure/drug effects
KW - Energy Metabolism/drug effects
KW - Epinephrine/blood
KW - Exercise/physiology
KW - Glucose/metabolism
KW - Glucose Transporter Type 4
KW - Glycogen/metabolism
KW - Heart Rate/drug effects
KW - Humans
KW - Infusions, Intravenous
KW - Interleukin-6/administration & dosage
KW - Male
KW - Monosaccharide Transport Proteins/biosynthesis
KW - Muscle Proteins
KW - Muscle, Skeletal/drug effects
KW - Norepinephrine/blood
KW - RNA, Messenger/biosynthesis
KW - Recombinant Proteins/pharmacology
KW - Regional Blood Flow/drug effects
U2 - 10.1113/jphysiol.2002.032938
DO - 10.1113/jphysiol.2002.032938
M3 - Journal article
C2 - 12640021
SN - 0022-3751
VL - 548
SP - 631
EP - 638
JO - The Journal of physiology
JF - The Journal of physiology
IS - Pt 2
ER -