TY - JOUR
T1 - Acute and chronic effects of growth hormone on renal regulation of electrolyte and water homeostasis
AU - Dimke, Henrik
AU - Flyvbjerg, Allan
AU - Frische, Sebastian
PY - 2007/10
Y1 - 2007/10
N2 - For decades, growth hormone (GH) has been known to influence electrolyte and water handling in humans and animals. However, the molecular mechanisms underlying the GH-induced anti-natriuretic and anti-diuretic effects have remained elusive. This review will examine the existing literature on renal electrolyte and water handling following acute and chronic GH-exposure. Renal responses to GH differ in acute and chronic models. Acute application of GH results in a reduced urinary electrolyte and water excretion, whereas the chronic effects of GH are more diverse, as this state likely represents a complex mixture of primary and secondary actions of GH as well as compensatory mechanisms. During chronic GH-exposure an initial sodium retaining state often occurs, followed by a normalization of the urinary sodium excretion, although extracellular volume expansion still persists. We recently described a possible mechanism by which GH acutely increases renal electrolyte and water reabsorption, by modulation of the kidney specific Na(+), K(+), 2Cl(-) co-transporter (NKCC2). The primary aim of this review is to investigate how GH-induced regulation of NKCC2 may be involved in the complex renal changes previously described during acute and chronic GH. We propose, that the GH-induced increase in NKCC2 activity may explain the initial water and sodium retention seen in a number of studies. Moreover, renal changes seen during prolonged GH-exposure may now be seen on the background of the acute stimulation of NKCC2. Additionally, GH also promotes renal acidification, thus influencing renal acid/base handling. The GH-induced renal acidification is partly compatible with changes in NKCC2 activity. Finally, we review the available data on changes in hormonal systems affecting tubular transport during acute and chronic GH-exposure.
AB - For decades, growth hormone (GH) has been known to influence electrolyte and water handling in humans and animals. However, the molecular mechanisms underlying the GH-induced anti-natriuretic and anti-diuretic effects have remained elusive. This review will examine the existing literature on renal electrolyte and water handling following acute and chronic GH-exposure. Renal responses to GH differ in acute and chronic models. Acute application of GH results in a reduced urinary electrolyte and water excretion, whereas the chronic effects of GH are more diverse, as this state likely represents a complex mixture of primary and secondary actions of GH as well as compensatory mechanisms. During chronic GH-exposure an initial sodium retaining state often occurs, followed by a normalization of the urinary sodium excretion, although extracellular volume expansion still persists. We recently described a possible mechanism by which GH acutely increases renal electrolyte and water reabsorption, by modulation of the kidney specific Na(+), K(+), 2Cl(-) co-transporter (NKCC2). The primary aim of this review is to investigate how GH-induced regulation of NKCC2 may be involved in the complex renal changes previously described during acute and chronic GH. We propose, that the GH-induced increase in NKCC2 activity may explain the initial water and sodium retention seen in a number of studies. Moreover, renal changes seen during prolonged GH-exposure may now be seen on the background of the acute stimulation of NKCC2. Additionally, GH also promotes renal acidification, thus influencing renal acid/base handling. The GH-induced renal acidification is partly compatible with changes in NKCC2 activity. Finally, we review the available data on changes in hormonal systems affecting tubular transport during acute and chronic GH-exposure.
KW - Animals
KW - Diabetes Mellitus, Type 1
KW - Glomerular Filtration Rate
KW - Growth Hormone
KW - Homeostasis
KW - Humans
KW - Insulin-Like Growth Factor I
KW - Kidney
KW - Models, Biological
KW - Water-Electrolyte Balance
KW - Journal Article
KW - Review
U2 - 10.1016/j.ghir.2007.04.008
DO - 10.1016/j.ghir.2007.04.008
M3 - Review
C2 - 17560155
SN - 1096-6374
VL - 17
SP - 353
EP - 368
JO - Growth Hormone & IGF Research
JF - Growth Hormone & IGF Research
IS - 5
ER -