Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo

Claus Mathiesen, Kirsten Caesar, Kirsten Engelund Thomsen, Tycho M Hoogland, Brent Marvin Witgen, Alexey Brazhe, Martin Lauritzen

36 Citationer (Scopus)

Abstract

Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative metabolism via mitochondrial signaling, but whether this also occurs in the intact brain is unknown. Here we applied a pharmacological approach to dissect the effects of ionic currents and cytosolic Ca(2+) rises of neuronal origin on activity-dependent rises in CMRO(2). We used two-photon microscopy and current source density analysis to study real-time Ca(2+) dynamics and transmembrane ionic currents in relation to CMRO(2) in the mouse cerebellar cortex in vivo. We report a direct correlation between CMRO(2) and summed (i.e., the sum of excitatory, negative currents during the whole stimulation period) field EPSCs (∑fEPSCs) in Purkinje cells (PCs) in response to stimulation of the climbing fiber (CF) pathway. Blocking stimulus-evoked rises in cytosolic Ca(2+) in PCs with the P/Q-type channel blocker ω-agatoxin-IVA (ω-AGA), or the GABA(A) receptor agonist muscimol, did not lead to a time-locked reduction in CMRO(2), and excitatory synaptic or action potential currents. During stimulation, neither ω-AGA or (μ-oxo)-bis-(trans-formatotetramine-ruthenium) (Ru360), a mitochondrial Ca(2+) uniporter inhibitor, affected the ratio of CMRO(2) to fEPSCs or evoked local field potentials. However, baseline CBF and CMRO(2) decreased gradually with Ru360. Our data suggest that in vivo activity-dependent rises in CMRO(2) are correlated with synaptic currents and postsynaptic spiking in PCs. Our study did not reveal a unique role of neuronal cytosolic Ca(2+) signals in controlling CMRO(2) increases during CF stimulation.
OriginalsprogEngelsk
TidsskriftJournal of Neuroscience
Vol/bind31
Udgave nummer50
Sider (fra-til)18327-37
Antal sider11
ISSN0270-6474
DOI
StatusUdgivet - 2011

Fingeraftryk

Dyk ned i forskningsemnerne om 'Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo'. Sammen danner de et unikt fingeraftryk.

Citationsformater