TY - JOUR
T1 - A Wearable Artificial Intelligence Feedback Tool (Wrist Angel) for Treatment and Research of Obsessive Compulsive Disorder
T2 - Protocol for a Nonrandomized Pilot Study
AU - Lønfeldt, Nicole Nadine
AU - Clemmensen, Line Katrine Harder
AU - Pagsberg, Anne Katrine
N1 - ©Nicole Nadine Lønfeldt, Line Katrine Harder Clemmensen, Anne Katrine Pagsberg. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 24.07.2023.
PY - 2023/7/24
Y1 - 2023/7/24
N2 - Background: Obsessive compulsive disorder (OCD) in youth is characterized by behaviors, emotions, physiological reactions, and family interaction patterns. An essential component of therapy involves increasing awareness of the links among thoughts, emotions, behaviors, bodily sensations, and family interactions. An automatic assessment tool using physiological signals from a wearable biosensor may enable continuous symptom monitoring inside and outside of the clinic and support cognitive behavioral therapy for OCD. Objective: The primary aim of this study is to evaluate the feasibility and acceptability of using a wearable biosensor to monitor OCD symptoms. The secondary aim is to explore the feasibility of developing clinical and research tools that can detect and predict OCD-relevant internal states and interpersonal processes with the use of speech and behavioral signals. Methods: Eligibility criteria for the study include children and adolescents between 8 and 17 years of age diagnosed with OCD, controls with no psychiatric diagnoses, and one parent of the participating youths. Youths and parents wear biosensors on their wrists that measure pulse, electrodermal activity, skin temperature, and acceleration. Patients and their parents mark OCD episodes, while control youths and their parents mark youth fear episodes. Continuous, in-the-wild data collection will last for 8 weeks. Controlled experiments designed to link physiological, speech, behavioral, and biochemical signals to mental states are performed at baseline and after 8 weeks. Interpersonal interactions in the experiments are filmed and coded for behavior. The films are also processed with computer vision and for speech signals. Participants complete clinical interviews and questionnaires at baseline, and at weeks 4, 7, and 8. Feasibility criteria were set for recruitment, retention, biosensor functionality and acceptability, adherence to wearing the biosensor, and safety related to the biosensor. As a first step in learning the associations between signals and OCD-related parameters, we will use paired t tests and mixed effects models with repeated measures to assess associations between oxytocin, individual biosignal features, and outcomes such as stress-rest and case-control comparisons. Results: The first participant was enrolled on December 3, 2021, and recruitment closed on December 31, 2022. Nine patient dyads and nine control dyads were recruited. Sixteen participating dyads completed follow-up assessments. Conclusions: The results of this study will provide preliminary evidence for the extent to which a wearable biosensor that collects physiological signals can be used to monitor OCD severity and events in youths. If we find the study to be feasible, further studies will be conducted to integrate biosensor signals output into machine learning algorithms that can provide patients, parents, and therapists with actionable insights into OCD symptoms and treatment progress. Future definitive studies will be tasked with testing the accuracy of machine learning models to detect and predict OCD episodes and classify clinical severity.
AB - Background: Obsessive compulsive disorder (OCD) in youth is characterized by behaviors, emotions, physiological reactions, and family interaction patterns. An essential component of therapy involves increasing awareness of the links among thoughts, emotions, behaviors, bodily sensations, and family interactions. An automatic assessment tool using physiological signals from a wearable biosensor may enable continuous symptom monitoring inside and outside of the clinic and support cognitive behavioral therapy for OCD. Objective: The primary aim of this study is to evaluate the feasibility and acceptability of using a wearable biosensor to monitor OCD symptoms. The secondary aim is to explore the feasibility of developing clinical and research tools that can detect and predict OCD-relevant internal states and interpersonal processes with the use of speech and behavioral signals. Methods: Eligibility criteria for the study include children and adolescents between 8 and 17 years of age diagnosed with OCD, controls with no psychiatric diagnoses, and one parent of the participating youths. Youths and parents wear biosensors on their wrists that measure pulse, electrodermal activity, skin temperature, and acceleration. Patients and their parents mark OCD episodes, while control youths and their parents mark youth fear episodes. Continuous, in-the-wild data collection will last for 8 weeks. Controlled experiments designed to link physiological, speech, behavioral, and biochemical signals to mental states are performed at baseline and after 8 weeks. Interpersonal interactions in the experiments are filmed and coded for behavior. The films are also processed with computer vision and for speech signals. Participants complete clinical interviews and questionnaires at baseline, and at weeks 4, 7, and 8. Feasibility criteria were set for recruitment, retention, biosensor functionality and acceptability, adherence to wearing the biosensor, and safety related to the biosensor. As a first step in learning the associations between signals and OCD-related parameters, we will use paired t tests and mixed effects models with repeated measures to assess associations between oxytocin, individual biosignal features, and outcomes such as stress-rest and case-control comparisons. Results: The first participant was enrolled on December 3, 2021, and recruitment closed on December 31, 2022. Nine patient dyads and nine control dyads were recruited. Sixteen participating dyads completed follow-up assessments. Conclusions: The results of this study will provide preliminary evidence for the extent to which a wearable biosensor that collects physiological signals can be used to monitor OCD severity and events in youths. If we find the study to be feasible, further studies will be conducted to integrate biosensor signals output into machine learning algorithms that can provide patients, parents, and therapists with actionable insights into OCD symptoms and treatment progress. Future definitive studies will be tasked with testing the accuracy of machine learning models to detect and predict OCD episodes and classify clinical severity.
KW - adolescents
KW - automatic assessment tool
KW - children
KW - clinical practice
KW - family accommodation
KW - machine learning
KW - mental health
KW - obsessive compulsive disorder
KW - oxytocin
KW - psychiatric symptoms
KW - psychotherapy
KW - signal processing
KW - wearable biosensor
UR - http://www.scopus.com/inward/record.url?scp=85167684424&partnerID=8YFLogxK
U2 - 10.2196/45123
DO - 10.2196/45123
M3 - Journal article
C2 - 37486738
SN - 1929-0748
VL - 12
SP - e45123
JO - JMIR research protocols
JF - JMIR research protocols
M1 - e45123
ER -