A short prokaryotic Argonaute activates membrane effector to confer antiviral defense

Zhifeng Zeng, Yu Chen, Rafael Pinilla-Redondo, Shiraz A. Shah, Fen Zhao, Chen Wang, Zeyu Hu, Chang Wu, Changyi Zhang, Rachel J. Whitaker, Qunxin She, Wenyuan Han*

*Corresponding author af dette arbejde
27 Citationer (Scopus)


Argonaute (Ago) proteins are widespread nucleic-acid-guided enzymes that recognize targets through complementary base pairing. Although, in eukaryotes, Agos are involved in RNA silencing, the functions of prokaryotic Agos (pAgos) remain largely unknown. In particular, a clade of truncated and catalytically inactive pAgos (short pAgos) lacks characterization. Here, we reveal that a short pAgo protein in the archaeon Sulfolobus islandicus, together with its two genetically associated proteins, Aga1 and Aga2, provide robust antiviral protection via abortive infection. Aga2 is a toxic transmembrane effector that binds anionic phospholipids via a basic pocket, resulting in membrane depolarization and cell killing. Ago and Aga1 form a stable complex that exhibits nucleic-acid-directed nucleic-acid-recognition ability and directly interacts with Aga2, pointing to an immune sensing mechanism. Together, our results highlight the cooperation between pAgos and their widespread associated proteins, suggesting an uncharted diversity of pAgo-derived immune systems.

TidsskriftCell Host and Microbe
Udgave nummer7
Sider (fra-til)930-943.e6
StatusUdgivet - 13 jul. 2022


Dyk ned i forskningsemnerne om 'A short prokaryotic Argonaute activates membrane effector to confer antiviral defense'. Sammen danner de et unikt fingeraftryk.