Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

A novel multicolor flow-cytometry application for quantitative detection of receptors on vascular smooth muscle cells

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Investigating the inflammation marker neutrophil-to-lymphocyte ratio in Danish blood donors with restless legs syndrome

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Antigenic and immunogenic evaluation of permutations of soluble hepatitis C virus envelope protein E2 and E1 antigens

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Dancing with atrial fibrillation - How arrhythmia affects everyday life of family members: A qualitative study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Increments in DNA-thioguanine level during thiopurine enhanced maintenance therapy of acute lymphoblastic leukemia

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  3. CGRP and migraine; from bench to bedside

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  4. Pre-Chiasmatic, Single Injection of Autologous Blood to Induce Experimental Subarachnoid Hemorrhage in a Rat Model

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

There is a need to develop new techniques for quantitative measurement of receptors expression on particular vasculature cells types. Here, we describe and demonstrate a novel method to measure quantitatively and simultaneously the expression of endothelin B receptor (ETB) on vascular smooth muscle cells (VSMC). We isolated cells from male rat tissues such as: brain pial, brain intraparenchymal and retina vessels. To analyze solid tissues, a single-cell suspension was prepared by a combined mechanic and enzymatic process. The cells were stained with Fixable Viability Dye, followed by fixation, permeabilization and antibodies staining. The expression of ETB receptors on VSMC was measured by flow-cytometry and visualized by fluorescence microscopy. We obtained a high percentage of viable cells 87.6% ± 1.5% pial; 84.6% ± 4.3% parenchymal and 90.6% ± 4% retina after isolation of single cells. We performed a quantitative measurement of ETB receptor expression on VSMC and we identified two subpopulations of VSMC based on their expression of smooth muscle cells marker SM22α. The results obtained from pial vessels are statistically significant (38.4% ± 4% vs 9.8% ± 3.32%) between the two subpopulations of VSMC. The results obtained from intraparenchymal and retina vessels were not statistically significant. By specific gating on two subpopulations, we were able to quantify the expression of ETB receptors. The two subpopulation expressed the same level of ETB receptor (p = 0.45; p = 0.3; p = 0.42) in pial, parenchymal and retina vessels, respectively. We applied our method to the animals after induction of subarachnoid hemorrhage (SAH). There was statistically significant expression of ETB receptor (p = 0.02) on VSMC between sham 61.4% ± 4% and SAH 77.4% ± 4% rats pial vessels. The presented technique is able to quantitatively and selectively measure the level of protein expression on VSMC. The entire technique is optimized for rat tissue; however the protocol can also be adapted for other species.

OriginalsprogEngelsk
TidsskriftP L o S One
Vol/bind12
Udgave nummer10
Sider (fra-til)e0186504
ISSN1932-6203
DOI
StatusUdgivet - 2017

ID: 52342100