Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Mass preserving image registration for lung CT

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Vessel-guided airway tree segmentation: A voxel classification approach

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Unsupervised motion-compensation of multi-slice cardiac perfusion MRI.

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Diabetes increases the risk of serious adverse events after re-irradiation of the spine

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Hybrid PET/MRI imaging in healthy unsedated newborn infants with quantitative rCBF measurements using 15O-water PET

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Cerebral infarction after fractionated stereotactic radiation therapy of benign anterior skull base tumors

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Moderate- to high-intensity exercise does not modify cortical β-amyloid in Alzheimer's disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.

OriginalsprogEngelsk
TidsskriftMedical Image Analysis
Vol/bind54
Sider (fra-til)220-237
Antal sider18
ISSN1361-8415
DOI
StatusUdgivet - maj 2019

ID: 56946582