Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

A metalloproteinase karilysin present in the majority of Tannerella forsythia isolates inhibits all pathways of the complement system

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Collagen VI Contains Multiple Host Defense Peptides with Potent In Vivo Activity

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Multiple Homozygous Variants in the STING-Encoding TMEM173 Gene in HIV Long-Term Nonprogressors

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Antibody-Mediated Neutralization of uPA Proteolytic Function Reduces Disease Progression in Mouse Arthritis Models

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Cyclodextrin Reduces Cholesterol Crystal-Induced Inflammation by Modulating Complement Activation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Plasma levels of mannose-binding lectin and future risk of venous thromboembolism

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Immune regulation by fibroblasts in tissue injury depends on uPARAP-mediated uptake of collectins

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Complement Nomenclature-Deconvoluted

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Monika Jusko
  • Jan Potempa
  • Abdulkarim Y Karim
  • Miroslaw Ksiazek
  • Kristian Riesbeck
  • Peter Garred
  • Sigrun Eick
  • Anna M Blom
Vis graf over relationer
Tannerella forsythia is a poorly studied pathogen despite being one of the main causes of periodontitis, which is an inflammatory disease of the supporting structures of the teeth. We found that despite being recognized by all complement pathways, T. forsythia is resistant to killing by human complement, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with karilysin, a metalloproteinase of T. forsythia, resulted in a decrease in bactericidal activity of the serum. T. forsythia strains expressing karilysin at higher levels were more resistant than low-expressing strains. Furthermore, the low-expressing strain was significantly more opsonized with activated complement factor 3 and membrane attack complex from serum compared with the other strains. The high-expressing strain was more resistant to killing in human blood. The protective effect of karilysin against serum bactericidal activity was attributable to its ability to inhibit complement at several stages. The classical and lectin complement pathways were inhibited because of the efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4 by karilysin, whereas inhibition of the terminal pathway was caused by degradation of C5. Interestingly, karilysin was able to release biologically active C5a peptide in human plasma and induce migration of neutrophils. Importantly, we detected the karilysin gene in >90% of gingival crevicular fluid samples containing T. forsythia obtained from patients with periodontitis. Taken together, the newly characterized karilysin appears to be an important virulence factor of T. forsythia and might have several important implications for immune evasion.
OriginalsprogEngelsk
TidsskriftJournal of Immunology
Vol/bind188
Udgave nummer5
Sider (fra-til)2338-49
Antal sider12
ISSN0022-1767
DOI
StatusUdgivet - 2012

ID: 36331436