Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

A correction for sample overlap in genome-wide association studies in a polygenic pleiotropy-informed framework

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Gene editing in the context of an increasingly complex genome

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  2. Strategy for efficient generation of numerous full-length cDNA clones of classical swine fever virus for haplotyping

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Erratum to: Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle

    Publikation: Bidrag til tidsskriftKommentar/debatForskningpeer review

  4. Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Genome-wide association study implicates CHRNA2 in cannabis use disorder

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Genetics of Anxiety Disorders

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  3. Efficacy and Safety of Abrilumab in a Randomized, Placebo-Controlled Trial for Moderate-to-Severe Ulcerative Colitis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Targeted Analysis of Serum Proteins Encoded at Known Inflammatory Bowel Disease Risk Loci

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Schizophrenia and Bipolar Disorder Working Groups of the Psychiatric Genomics Consortium
  • Marissa LeBlanc
  • Verena Zuber
  • Wesley K. Thompson
  • Ole A. Andreassen
  • Arnoldo Frigessi
  • Bettina Kulle Andreassen
  • Stephan Ripke
  • Benjamin M. Neale
  • Aiden Corvin
  • James T.R. Walters
  • Kai How Farh
  • Phil Lee
  • Brendan Bulik-Sullivan
  • David A. Collier
  • Hailiang Huang
  • Tune H. Pers
  • Ingrid Agartz
  • Esben Agerbo
  • Margot Albus
  • Madeline Alexander
  • Farooq Amin
  • Silviu A. Bacanu
  • Martin Begemann
  • Richard A. Belliveau
  • Judit Bene
  • Elizabeth Bevilacqua
  • Tim B. Bigdeli
  • Donald W. Black
  • Richard Bruggeman
  • Nancy G. Buccola
  • Randy L. Buckner
  • Wiepke Cahn
  • Guiqing Cai
  • Murray J. Cairns
  • Dominique Campion
  • Rita M. Cantor
  • Vaughan J. Carr
  • Noa Carrera
  • Stanley V. Catts
  • Kimberly D. Chambert
  • Raymond C.K. Chan
  • Ronald Y.L. Chen
  • Eric Y.H. Chen
  • Wei Cheng
  • Mark Hansen
  • Thomas Hansen
  • Sandra Meier
  • Line Olsen
  • Henrik B. Rasmussen
  • Thomas Werge
Vis graf over relationer

Background: There is considerable evidence that many complex traits have a partially shared genetic basis, termed pleiotropy. It is therefore useful to consider integrating genome-wide association study (GWAS) data across several traits, usually at the summary statistic level. A major practical challenge arises when these GWAS have overlapping subjects. This is particularly an issue when estimating pleiotropy using methods that condition the significance of one trait on the signficance of a second, such as the covariate-modulated false discovery rate (cmfdr). Results: We propose a method for correcting for sample overlap at the summary statistic level. We quantify the expected amount of spurious correlation between the summary statistics from two GWAS due to sample overlap, and use this estimated correlation in a simple linear correction that adjusts the joint distribution of test statistics from the two GWAS. The correction is appropriate for GWAS with case-control or quantitative outcomes. Our simulations and data example show that without correcting for sample overlap, the cmfdr is not properly controlled, leading to an excessive number of false discoveries and an excessive false discovery proportion. Our correction for sample overlap is effective in that it restores proper control of the false discovery rate, at very little loss in power. Conclusions: With our proposed correction, it is possible to integrate GWAS summary statistics with overlapping samples in a statistical framework that is dependent on the joint distribution of the two GWAS.

OriginalsprogEngelsk
Artikelnummer494
TidsskriftBMC Genomics
Vol/bind19
Udgave nummer1
ISSN1471-2164
DOI
StatusUdgivet - 25 jun. 2018

ID: 55289573