Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
E-pub ahead of print

A Contrast-Adaptive Methodfor Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. On the cortical connectivity in the macaque brain: a comparison of diffusion tractography and histological tracing data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Cerebellar - premotor cortex interactions underlying visuomotor adaptation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Directed connectivity between primary and premotor areas underlying ankle force control in young and older adults

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Here we present a method for the simultaneous segmentation of white matter lesions and normal-appearing neuroanatomical structures from multi-contrast brain MRI scans of multiple sclerosis patients. The method integrates a novel model for white matter lesions into a previously validated generative model for whole-brain segmentation. By using separate models for the shape of anatomical structures and their appearance in MRI, the algorithm can adapt to data acquired with different scanners and imaging protocols without retraining. We validate the method using four disparate datasets, showing robust performance in white matter lesion segmentation while simultaneously segmenting dozens of other brain structures. We further demonstrate that the contrast-adaptive method can also be safely applied to MRI scans of healthy controls, and replicate previously documented atrophy patterns in deep gray matter structures in MS. The algorithm is publicly available as part of the open-source neuroimaging package FreeSurfer.

OriginalsprogEngelsk
TidsskriftNeuroImage
Sider (fra-til)117471
ISSN1053-8119
DOI
StatusE-pub ahead of print - 21 okt. 2020

Bibliografisk note

Copyright © 2020. Published by Elsevier Inc.

ID: 61112630