Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital

A composite role of vitronectin and urokinase in the modulation of cell morphology upon expression of the urokinase receptor

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


  1. Expression and one-step purification of active lipoprotein lipase contemplated by biophysical considerations

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Arginase 1-based immune modulatory vaccines induce anti-cancer immunity and synergize with anti-PD-1 checkpoint blockade

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  4. The collagen receptor uparap in malignant mesothelioma: A potential diagnostic marker and therapeutic target

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

The urokinase receptor, urokinase receptor (uPAR), is a glycosylphosphatidylinositol-anchored membrane protein engaged in pericellular proteolysis and cellular adhesion, migration, and modulation of cell morphology. A direct matrix adhesion is mediated through the binding of uPAR to vitronectin, and this event is followed by downstream effects including changes in the cytoskeletal organization. However, it remains unclear whether the adhesion through uPAR-vitronectin is the only event capable of initiating these morphological rearrangements or whether lateral interactions between uPAR and integrins can induce the same response. In this report, we show that both of these triggering mechanisms can be operative and that uPAR-dependent modulation of cell morphology can indeed occur independently of a direct vitronectin binding. Expression of wild-type uPAR on HEK293 cells led to pronounced vitronectin adhesion and cytoskeletal rearrangements, whereas a mutant uPAR, uPAR(W32A) with defective vitronectin binding, failed to induce both phenomena. However, upon saturation of uPAR(W32A) with the protease ligand, pro-uPA, or its receptor-binding domain, the ability to induce cytoskeletal rearrangements was restored, although this did not rescue the uPAR-vitronectin binding and adhesion capability. On the other hand, using other uPAR variants, we could show that uPAR-vitronectin adhesion is indeed capable and sufficient to induce the same morphological rearrangements. This was shown with cells expressing a different single-site mutant, uPAR(Y57A), in the presence of a synthetic uPAR-binding peptide, as well as with wild-type uPAR, which underwent cytoskeletal rearrangements even when cultivated in uPA-deficient serum. Blocking of integrins with an Arg-Gly-Asp-containing peptide counteracted the matrix contacts necessary to initiate the uPAR-dependent cytoskeletal rearrangements, whereas inactivation of the Rac signaling pathway in all cases suppressed the occurrence of the same events.

TidsskriftJournal of Biological Chemistry
Udgave nummer22
Sider (fra-til)15217-23
Antal sider7
StatusUdgivet - 30 maj 2008

ID: 46435908