Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

A Clinically Applicable Interactive Micro and Macro-Sleep Staging Algorithm for Elderly and Patients with Neurodegeneration

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Towards a Flexible Deep Learning Method for Automatic Detection of Clinically Relevant Multi-Modal Events in the Polysomnogram

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. A Blind Source-Based Method for Automated Artifact-Correction in Standard Sleep EEG

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. A New Fully Automated Random-Forest Algorithm for Sleep Staging

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Deep residual networks for automatic sleep stage classification of raw polysomnographic waveforms

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Mobile Apnea Screening System for at-home Recording and Analysis of Sleep Apnea Severity

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Arousal characteristics in patients with Parkinson's disease and isolated rapid eye movement sleep behavior disorder

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Brain tumours in children and adolescents may affect the circadian rhythm and quality of life

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Brain tumours result in sleep disorders in children and adolescents

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. European guideline and expert statements on the management of narcolepsy in adults and children

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  5. Automatic Segmentation to Cluster Patterns of Breathing in Sleep Apnea

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Matteo Cesari
  • Julie A E Christensen
  • Friederike Sixel-Doring
  • Maria-Lucia Muntean
  • Brit Mollenhauer
  • Claudia Trenkwalder
  • Poul Jennum
  • Helge B D Sorensen
Vis graf over relationer

Elderly and patients with neurodegenerative diseases (NDD) often complain about sleep problems and show altered sleep structure. Automated algorithms for efficient and specific sleep staging are needed. We propose a new algorithm using only one electroencephalographic and two electrooculographic channels to score wakefulness, rapid eye movement (REM) sleep and non-REM sleep in a cohort of elderly healthy controls (HC), patients with Parkinson's disease (PD), isolated REM sleep behavior disorder (iRBD), considered the prodromal stage of PD, and patients with PD and RBD (PD+RBD). The proposed method scores both standard 30-s epochs (macro-staging) and 5-s mini-epochs (micro-staging), whose evaluation may help to better understand sleep micro-structure. Moreover, the algorithm is interactive, as it labels the classified sleep epochs as either certain or uncertain, so that experts can manually review the uncertain ones. The algorithm performances were evaluated for macro-sleep staging, where it achieved overall accuracies of 0.87±0.05 in 41 HC, 0.86±0.10 in 57 PD, 0.76±0.10 in 31 iRBD and 0.77±0.10 in 30 PD+RBD patients when all 30-s epochs were considered. The accuracies increased to 0.91±0.05, 0.90±0.08, 0.85±0.09, 0.88±0.08 respectively when considering only the certain ones. The epochs labeled as uncertain were 9.95±4.15%, 11.13±7.86%, 18.39±7.38% and 18.90±8.00% in HC, PD, iRBD and PD+RBD respectively. The proposed interactive micro and macro sleep staging algorithm can be used in clinics to reduce the burden of manual sleep staging in elderly and patients with NDD.

OriginalsprogEngelsk
TidsskriftI E E E Engineering in Medicine and Biology Society. Conference Proceedings
Vol/bind2019
Sider (fra-til)3649-3652
Antal sider4
ISSN1557-170X
DOI
StatusUdgivet - jul. 2019

ID: 59152326