Forskning
Udskriv Udskriv
Switch language
Bispebjerg Hospital - en del af Københavns Universitetshospital
Udgivet

Developing and validating COVID-19 adverse outcome risk prediction models from a bi-national European cohort of 5594 patients

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Cytokine concentration across the stratum corneum in atopic dermatitis and healthy controls

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Author Correction: Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    Publikation: Bidrag til tidsskriftKommentar/debatForskningpeer review

  3. Glycemic control and use of glucose-lowering medications in hospital-admitted type 2 diabetes patients over 80 years

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Simvastatin improves mitochondrial respiration in peripheral blood cells

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Predictive Importance of Blood Pressure Characteristics With Increasing Age in Healthy Men and Women: The MORGAM Project

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. På vej mod en sundere og bedre behandlet befolkning?

    Publikation: Bidrag til tidsskriftKommentar/debatFormidling

  3. Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Symptoms and biomarkers associated with undiagnosed celiac seropositivity

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Patients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a cohort of approx. 2.6 million citizens in Denmark, SARS-CoV-2 PCR tests were performed on subjects suspected for COVID-19 disease; 3944 cases had at least one positive test and were subjected to further analysis. SARS-CoV-2 positive cases from the United Kingdom Biobank was used for external validation. The ML models predicted the risk of death (Receiver Operation Characteristics-Area Under the Curve, ROC-AUC) of 0.906 at diagnosis, 0.818, at hospital admission and 0.721 at Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted risks of hospital and ICU admission and use of mechanical ventilation. Common risk factors, included age, body mass index and hypertension, although the top risk features shifted towards markers of shock and organ dysfunction in ICU patients. The external validation indicated fair predictive performance for mortality prediction, but suboptimal performance for predicting ICU admission. ML may be used to identify drivers of progression to more severe disease and for prognostication patients in patients with COVID-19. We provide access to an online risk calculator based on these findings.

OriginalsprogEngelsk
TidsskriftScientific Reports
Vol/bind11
Udgave nummer1
Sider (fra-til)3246
ISSN2045-2322
DOI
StatusUdgivet - 5 feb. 2021

ID: 62084862